四川应用型自考 四川自考【课程】【书籍】订购入口

自学考试物理(工)复习指导第二章

发布日期:2018-05-23 12:26:34 编辑整理:四川自考网 【字体:
第二章 守恒定律

  本章重点是三个定理和三个守恒定律:即动量定理与动量守恒定律;角动量定理与角动量守恒定律;以及功能原理与机械能守恒定律。

  第一部分:

  一、动量与冲量、质点的动量定理(领会及简单应用)

  动量的概念:动量是物体的质量和其速度的乘积 P=mv (“动”就是有速度v,“量”就是质量m,所以动量就是和这两个东东有关^j^)动量是矢量。

  动量和速度及质量有关,但和力F有什么关系呢? 有,当一个物体在某一瞬时动量发生改变时,就表明在这一瞬时有一个合外力作用于它上面,反过来说,当一个物体受到不等于0的合外力作用时,它的动量就会改变(因为这时有了加速度,使得速度变化,所以动量就变了。)当然,如果物体的质量发生变化时(如一个装水的桶,在运动中水不断外流)它的动量也发生着改变,此时,F也在改变。外力F就是物体在该瞬时的动量时间变化率 .它们都是矢量。

  冲力:量值很大、变化很快、作用时间很短的力。

  冲量的概念:就是在一段时间内,物体动量的增量(或者说是有方向的变化量)。这里保留了时间,有时虽然很短,但是它没消去。若是取极短的时间,则dI=Fdt 这是质点动量定理的微分形式。若是取一段时间,则这个冲量就是对上式的定积分

  I=∫t1t2Fdt 这就是质点动量定理的积分形式。

  所以说,冲量就是力和时间的积。它与动量的关系是,物体所受合外力的冲量等于物体动量的增量。冲量也是矢量。它的方向由动量P1P2的矢量差可以确定。根据冲量式子可得到一个平均冲力F拔=I/(t2t1)

  质点的动量定理(简单应用):根据上面的学习,我们知道了力和冲量的关系。当物体动量发生相同的变化时,若期间经过的时间越长,则物体受到的力就越小。反之时间短则受力大。动量定理在应用时,要注意合力的冲量方向与受力物体的动量增量方向一致。一般来说,冲量的方向既不沿初动量方向,也不沿末动量方向。

  重要提示:请注意书中的符号,当该符号为粗体表示时,表明该物理量为矢量,若只用一般斜体时,它表示该量为标量,或只取其大小的量。手写时,矢量的字母上方用一箭头表示如:

  本网页将尽可能地加以区分。

  二、质点系的动量定理 (领会)

  质点系:若干有相互作用的物体作为一个整体考虑,当这些物体看作质点时,这组质点就称为质点系。简称为系统。

  系统内各质点的相互作用称为系统的内力,系统外其他物体对系统内任一质点的作用力称为系统所受的外力。

  质点系的动量定理表明:作用在系统上的外力的总冲量等于系统总动量的增量。

  要掌握一点:只有外力的作用才能改变物体的总动量。

  三、动量守恒定律(领会及综合应用)

  动量守恒定律的成立条件是:系统所受的合外力为零。

  应用该定律时,必须认真考虑定律成立的条件。或者考虑合外力是否可以忽略。另外,可以应用动量守恒定律的投影式来判断在某一方向上其合外力的投影是否为0.这在实际应用时很管用。

  而这一部分内容最重要的就是应用这个定律来解题。所以我们要认真完成每一道题。从中总结出解题的方法和思路。

  第二部分:

  四、角动量定理(领会及简单应用)

  角动量:是指质点的动量与该质点对某参考点O的位矢R的乘积,用L表示 即:L=r×p 它是一个矢量。大小为:L=rpsinφ 方向按右手螺旋定则确定,即当质点相对O顺时针转时,角动量方向穿过纸面向下,反之则向上。

  力矩:引起物体动量改变的原因是力,引起物体角动量改变的原因是力矩。质点在力F作用下对参考点O的力矩就是力与该质点到O点位矢的乘积。力矩也是矢量: M=r×F 其量值为:M=rFsinφ 方向同角动量的判断。

  角动量定理:(就是动量定理的“力”字变成“力矩”后的定理:)它表明,作用在质点上的合外力矩等于质点角动量的时间变化率。M=dL/dt 我们应运用该定理(公式)作一些简单运算。

  五、角动量守恒定律(简单应用)

  简单应用就是解一些简单的问题,做一些分析,论证等

[1]   

本文标签:四川自考 串讲笔记 自学考试物理(工)复习指导第二章

转载请注明:文章转载自(http://www.sczk.sc.cn

本文地址:http://www.sczk.sc.cn/zl/4707.html


《四川自考网》免责声明:

(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以省考试院及院校官方发布公布的正式信息为准。

(二)本站文章内容信息来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。联系邮箱:812379481@qq.com

nav

自学考试物理(工)复习指导第二章

编辑:四川自考网 日期:2018-05-23 阅读:
课程购买

《自考课程》名师讲解,轻松易懂,助您轻松上岸!低至39.9元/科!

第二章 守恒定律

  本章重点是三个定理和三个守恒定律:即动量定理与动量守恒定律;角动量定理与角动量守恒定律;以及功能原理与机械能守恒定律。

  第一部分:

  一、动量与冲量、质点的动量定理(领会及简单应用)

  动量的概念:动量是物体的质量和其速度的乘积 P=mv (“动”就是有速度v,“量”就是质量m,所以动量就是和这两个东东有关^j^)动量是矢量。

  动量和速度及质量有关,但和力F有什么关系呢? 有,当一个物体在某一瞬时动量发生改变时,就表明在这一瞬时有一个合外力作用于它上面,反过来说,当一个物体受到不等于0的合外力作用时,它的动量就会改变(因为这时有了加速度,使得速度变化,所以动量就变了。)当然,如果物体的质量发生变化时(如一个装水的桶,在运动中水不断外流)它的动量也发生着改变,此时,F也在改变。外力F就是物体在该瞬时的动量时间变化率 .它们都是矢量。

  冲力:量值很大、变化很快、作用时间很短的力。

  冲量的概念:就是在一段时间内,物体动量的增量(或者说是有方向的变化量)。这里保留了时间,有时虽然很短,但是它没消去。若是取极短的时间,则dI=Fdt 这是质点动量定理的微分形式。若是取一段时间,则这个冲量就是对上式的定积分

  I=∫t1t2Fdt 这就是质点动量定理的积分形式。

  所以说,冲量就是力和时间的积。它与动量的关系是,物体所受合外力的冲量等于物体动量的增量。冲量也是矢量。它的方向由动量P1P2的矢量差可以确定。根据冲量式子可得到一个平均冲力F拔=I/(t2t1)

  质点的动量定理(简单应用):根据上面的学习,我们知道了力和冲量的关系。当物体动量发生相同的变化时,若期间经过的时间越长,则物体受到的力就越小。反之时间短则受力大。动量定理在应用时,要注意合力的冲量方向与受力物体的动量增量方向一致。一般来说,冲量的方向既不沿初动量方向,也不沿末动量方向。

  重要提示:请注意书中的符号,当该符号为粗体表示时,表明该物理量为矢量,若只用一般斜体时,它表示该量为标量,或只取其大小的量。手写时,矢量的字母上方用一箭头表示如:

  本网页将尽可能地加以区分。

  二、质点系的动量定理 (领会)

  质点系:若干有相互作用的物体作为一个整体考虑,当这些物体看作质点时,这组质点就称为质点系。简称为系统。

  系统内各质点的相互作用称为系统的内力,系统外其他物体对系统内任一质点的作用力称为系统所受的外力。

  质点系的动量定理表明:作用在系统上的外力的总冲量等于系统总动量的增量。

  要掌握一点:只有外力的作用才能改变物体的总动量。

  三、动量守恒定律(领会及综合应用)

  动量守恒定律的成立条件是:系统所受的合外力为零。

  应用该定律时,必须认真考虑定律成立的条件。或者考虑合外力是否可以忽略。另外,可以应用动量守恒定律的投影式来判断在某一方向上其合外力的投影是否为0.这在实际应用时很管用。

  而这一部分内容最重要的就是应用这个定律来解题。所以我们要认真完成每一道题。从中总结出解题的方法和思路。

  第二部分:

  四、角动量定理(领会及简单应用)

  角动量:是指质点的动量与该质点对某参考点O的位矢R的乘积,用L表示 即:L=r×p 它是一个矢量。大小为:L=rpsinφ 方向按右手螺旋定则确定,即当质点相对O顺时针转时,角动量方向穿过纸面向下,反之则向上。

  力矩:引起物体动量改变的原因是力,引起物体角动量改变的原因是力矩。质点在力F作用下对参考点O的力矩就是力与该质点到O点位矢的乘积。力矩也是矢量: M=r×F 其量值为:M=rFsinφ 方向同角动量的判断。

  角动量定理:(就是动量定理的“力”字变成“力矩”后的定理:)它表明,作用在质点上的合外力矩等于质点角动量的时间变化率。M=dL/dt 我们应运用该定理(公式)作一些简单运算。

  五、角动量守恒定律(简单应用)

  简单应用就是解一些简单的问题,做一些分析,论证等

[1]   

微信扫一扫,进群领取资料!

    微信咨询老师
  • (扫码加入[四川自考交流群])
    历年真题、复习资料、备考方案》,马上领取!
最新真题、复习资料、模拟试题 | 一键领取 >>
【四川自考网声明】:

1、由于各方面情况的调整与变化,本网提供的考试信息仅供参考,考试信息以省考试院及院校官方发布的信息为准。

2、本网信息来源为其他媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com。